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Nascent polypeptides emerging from the ribosome are assisted by a pool of molecular chaperones and targeting
factors, which enable them to efficiently partition as cytosolic, integral membrane or exported proteins. Exten-
sive genetic and biochemical analyses have significantly expanded our knowledge of chaperone tasking through-
out this process. In bacteria, it is known that the folding of newly-synthesized cytosolic proteins is mainly
orchestrated by three highly conserved molecular chaperones, namely Trigger Factor (TF), DnaK (HSP70) and
GroEL (HSP60). Yet, it has been reported that these major chaperones are strongly involved in protein transloca-
tion pathways as well. This review describes such essential molecular chaperone functions, with emphasis on
both the biogenesis of inner membrane proteins and the post-translational targeting of presecretory proteins
to the Sec and the twin-arginine translocation (Tat) pathways. Critical interplay between TF, DnaK, GroEL and
other molecular chaperones and targeting factors, including SecB, SecA, the signal recognition particle (SRP)
and the redox enzymematuration proteins (REMPs) is also discussed. This article is part of a Special Issue entitled:
Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. General overview of the protein folding and targeting pathways
in bacteria

In bacteria, nascent polypeptide chains emerging from the ribosomal
exit tunnel are assisted by molecular chaperones and targeting factors
that facilitate their partition as cytosolic, integralmembrane, or exported
proteins. Although selective binding to such factors is primarily deter-
mined by the amino acid composition of the nascent chain, including
the presence of secondary structures, signal anchor or signal peptide se-
quences, it is significantly influenced by the translation machinery itself
[1–3]. Indeed, the presence of rare codons inmRNA sequences canmod-
ulate the rate of translation and significantly influence both the folding of
nascent polypeptides and interactions with downstream chaperones
[1,3–5]. Moreover, the ribosomal exit tunnel can promote nascent
chain compaction or helical conformation in the lower and upper part
of the tunnel, the middle part of the tunnel being constricted by L4 and
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L22 ribosomal proteins [6]. Tertiary structures of small domain units
can also form near the exit port of the tunnel and the ribosome itself
can prevent misfolding of nascent chains by modulating their folding
rate [7,8]. Key to the early recruitment of molecular chaperones and
targeting factors to emerging nascent chains is the ribosomal protein
L23, which is located at the ribosomal polypeptide exit and serves as a
docking site for several factors, including the molecular chaperones
Trigger Factor (TF), the signal recognition particle (SRP), the translocase
motor SecA and other proteins involved in enzymatic processing of
nascent chains [9,10]. Early binding to such factors strongly impacts
the downstream interacting cascades leading to appropriate cellular
localization and folding of newly-synthesized proteins.

In the bacterium Escherichia coli, newly-made polypeptides of inte-
gral cytoplasmic membrane proteins and some presecretory proteins,
which contain strong hydrophobic signal anchor or signal peptide se-
quences, are recognized by SRP as they are emerging from the ribosome
and targeted co-translationally to the Sec translocation pore at the cyto-
plasmic membrane [11]. Yet, certain inner membrane proteins are di-
rectly targeted to the insertase YidC at the inner membrane in an SRP-
independentmanner [12]. In contrast, themajority of presecretory pro-
teins are either translocated folded via the twin-arginine translocation
(Tat) pathway or unfolded via the Sec pathway [13,14].

Presecretory proteins of the Sec pathway, which contain mildly hy-
drophobic signal sequences, need to cross the inner membrane before
they acquire their stable tertiary structures. Such proteins are generally
targeted post-translationally to the Sec translocon at the inner mem-
brane via a dedicated pathway involving two cytosolic proteins: the
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ATPase SecA and themolecular chaperone SecB [15,16]. In this case, the
essential SecA protein, which has an increased affinity for proteins con-
taining signal sequences, binds to nascent presecretory proteins,
delivers its client to the Sec translocon and drives the ATP-dependent
translocation through the Sec translocon [17]. While an early co-
translational interaction of SecAwith precursors is facilitated by its spe-
cific affinity for the ribosomal protein L23 at polypeptide exit [18], the
post-translational targeting of precursors by SecA is greatly facilitated
by the ATP-independent homotetrameric chaperone SecB, which is
conserved inmost proteobacteria [19]. SecB is known to bind nonnative
substrates either co- or post-translationally, with high affinity andwith-
out specificity for signal sequences. SecB can either bind substrates
alone and targets them to the Sec translocon via its specific binding
site on SecA, or be recruited to early SecA-precursor complexes released
from the ribosome: both events leading to post-translational transloca-
tion of precursors [16,20].

The Tat protein export pathway acts independently of the Sec path-
way to post-translationally translocate proteins and protein complexes
that have been previously folded and assembled in the cytoplasm
[13,21]. Tat protein substrates possess a classical signal sequence with
a consensus sequence (S/T)-R-R-x-F-L-K inserted between the N-
region and the hydrophobic core, which mediates specific targeting to
the Tat translocon at the inner membrane. Many Tat substrates possess
specific chaperones called REMPs (redox enzyme maturation proteins)
that interact with the twin-arginine leader peptide, protect Tat sub-
strates from degradation, and assist its folding/assembly and its later
engagement with the Tat translocon [22].

The role played bymolecular chaperones during the folding of newly-
synthetized cytosolic proteins in E. coli has been extensively studied dur-
ing the past 15 years [23] and it has been shown that such a process is
mainly orchestrated by the highly conserved molecular chaperones TF,
DnaK (HSP70) and GroEL (HSP60) [24–28]. The ribosome-bound TF is
the first chaperone to interact co-translationally with nascent polypep-
tides and it is believed that themajority of the newly synthesized proteins
can reach their native state in the cytosol without additional help. Yet, a
substantial portion of cytosolic proteins (about 30%) need further co-
and/or post-translational assistance by the downstream ATP-dependent
molecular chaperones DnaK and GroEL to complete their folding [9]. In-
terestingly, it has been shown that these three major molecular chaper-
ones play important roles in protein targeting pathways as well.
Moreover, significant interplays have been observed between these chap-
erones and other factors involved in such pathways, including SecB, SecA,
SRP and the specific REMPs of Tat substrates. In this review, we wish to
examine such specific chaperone tasking of TF, DnaK andGroEL. Follow-
ing a brief description of their structure, their chaperone cycle, their sub-
strate specificity and their well-established function during the folding
of cytosolic proteins (Sections2 to 5), a detailed analysis of their key con-
tribution to the main protein targeting and translocation pathways
will be presented (Sections 6 to 8).

2. The ribosome-bound TF chaperone

The ribosome-bound TF is thefirst knownmolecular chaperone to in-
teract with newly synthesized polypeptides in E. coli [29]. It is a 48 kDa
protein constituted of 3 distinct domains with an elongated topology
(Fig. 1; [30]). The N-terminal domain of TF is the ribosome binding do-
main, which also contributes to its chaperone activity. This domain pos-
sesses some structural homology with the molecular chaperone Hsp33
except for the additional loop containing the TF signature motif
“GFRxGxxP” involved in the binding of TF to the ribosomal protein L23
close to the polypeptide exit tunnel [31,32]. A long linker region is
found between the ribosome binding domain and the active peptidyl-
prolyl cis/trans isomerase domain (PPIase) of TF. The PPIase domain is
dispensable for the chaperone function of TF in vivo in E. coli, but can
enhance chaperone activity of TF as a secondary binding site for sub-
strates in vitro [33]. The C-terminal domain of TF, which is composed
of two protruding helical arms positioned between the N-terminal and
the PPIase domains, resembles theN-terminal domain of the periplasmic
chaperone SurA. This domain represents the main chaperone domain of
TF, providing binding sites for emerging polypeptides [30,33,34].

Although TF is conserved in bacteria and chloroplasts, its PPIase or its
N-terminal domain may be absent in some cases [35–37], and certain
bacteria such as Desulfitobacterium hafniense even possess more than
one TF chaperone [37]. TF is an abundant cytosolic protein, with a cellu-
lar concentration of ~50 μM, thus exceeding that of ribosome by 2 to 3
fold. It cycles on and off the ribosome in an ATP-independent manner
and with a 1:1 stoichiometry. The presence of a nascent chain signifi-
cantly increases the affinity of TF for the ribosome [35,38–40]. Following
release from the ribosome, TF may stay bound to elongating polypep-
tides, allowing another free TF to bind the ribosome and in some cases
to facilitate transfer of its substrate to the downstream chaperones
DnaKJE and GroESL [40]. In addition, it has been shown that free TF
can dimerize and encapsulate partially folded proteins perhaps facilitat-
ing their incorporation into larger protein complexes, thus revealing an
additional role for TF in protein complex assembly [41].

TF interactionwith the ribosome is crucial for its chaperone activities
during co-translational folding of nascent polypeptide chains and it has
been shown that in vitro TF can interactwith nascent polypeptide chains
as short as 40 amino acids [33,42,43]. Yet, ribosome profiling analysis of
TF-ribosome-nascent chain complexes indicates that in vivo TF may
preferentially bind to longer nascent polypeptide chains of about 100
amino acids [44]. This relatively late interaction between TF and the na-
scent chainmay facilitate earlier interactionwith SRP orwith the nascent
chain processing enzymes peptide deformylase (PDF) and methionine
aminopeptidase (MAP), as shown recently [10,45–47].

It is believed that ribosome-bound TF interacts co-translationally
with most of the newly synthesized polypeptides and that 60–70% of
the E. coli cytosolic proteins interacting with TF could reach their na-
tive state without further assistance by the downstream chaperones
DnaKJE and GroESL [24,25]. In agreement with such a wide range of
interactors, a screening of membrane-bound peptides for TF binding
revealed that this chaperone preferentially interacts with short mo-
tifs enriched in aromatic residues and basic residues that are fre-
quently found (every 32 residues) in proteins [42,48]. In addition,
it was recently shown that TF utilizes several substrate binding sur-
faces of its three domains to bind continuous and discontinuous hy-
drophobic sequences in nascent polypeptides as well as hydrophilic
regions in folded proteins [41,49]. While the presence of TF arched
over the polypeptide exit can facilitate the folding small protein do-
mains [42,50], it has been demonstrated that upon ribosome binding
TF can significantly delay the folding of larger proteins in order to
minimize misfolding and aggregation [26,51,52], perhaps decreasing
the rate of structural rearrangements within the nascent peptide
and/or avoiding tertiary structure formation [52]. In addition to fold-
ing retardation, TF also exhibits unfolding activity to potentially reroute
unproductively folded nascent chains [51]. Remarkably, such chaper-
one properties of TF might significantly contribute to the post-
translational targeting of presecretory proteins that need to reach
the Sec translocon in a non-native, translocation competent form (see
Section 6 below).

In vivo, mutations in the E. coli tig gene encoding TF are tolerated
and exert nomajor effect on E. coli growth under standard laboratory
conditions [24,25,53]. Nevertheless, tig mutants are sensitive to cer-
tain antibiotics and detergents and exhibit reduced and increased
cell viability at 4 °C and 50 °C respectively [54,55]. Note that the
main TF-associated phenotypes in E. coli are shown in Table 1. Muta-
tions in tig have been characterized in other bacteria as well, and in
these cases the absence of TF generally produces modest effects on
bacterial growth, as observed for E. coli. These bacteria include Bacillus
subtilis [56,57], Sinorhizobium meliloti [58], Listeria monocytogenes [59],
Streptococcus mutans [60,61] and Streptococcus pyogenes [62]. In E. coli,
such a discrepancy between the major contribution of TF during de
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novo protein folding and the lack of severe phenotype in vivo is largely
explained by the fact that TF functions are efficiently substituted by
the DnaKJE chaperone machine.

3. The DnaKJE chaperone machine

The multifunctional DnaKJE chaperone machine from E. coli is the
best characterized member of the HSP70 chaperone family. It is one of
the most abundant cytoplasmic chaperones expressed constitutively
(with a cellular concentration of ~30 μM) and its expression is induced
in response to different stresses [63]. DnaK is a 638 amino acid long
protein defined by an N-terminal nucleotide binding domain (NBD)
with ATPase activity, a C-terminal substrate binding domain (SBD)
subdivided into a β-sandwich subdomain and a α-helical domain
forming a lid. Both domains are connected by a linker (aa 381 to 397)
which is highly conserved and possesses a characteristic 388DVLLLD393

hydrophobic segment essential for allosteric communication between
the NBD and the SBD (Fig. 1; [64–66]). In addition, DnaK possesses a



Table 1
Most relevant phenotypes associated with mutation or overexpression of the TF, DnaKJE and GroESL chaperones of E. coli.

Chaperones Phenotypesa

TF A: Sensitive to vancomycin, SDS, dibucaine, and EDTA [44,55]. Suppresses Ts of secA51 mutant, Cs of secY40, secAR11, secB [125] and dnaJmutants [125] and the cell
division defect of divE42 mutant [198]. Depletion induces cell filamentation [53], reduces viability at 4 °C and increases viability at 50 °C [54]. Ts (above 30 °C) if
combined with dnaK mutation [31]. SecB overexpression suppresses Ts phenotype of dnaK tig [118].
B: Toxic [53], increased toxicity in secB or dnaKmutants [31,125], and reduced toxicity in ompFmutant [31]. Severe cell filamentation suppressed by co-overexpression
of FtsZ [53]; enhances viability in the cold [54].

DnaKJE A: dnaK: Cs below 18 °C, Ts above 35 °C, slow growth, filamentous, flat and translucent colonies. Readily accumulates better growing suppressors. Non-motile, lack
flagella, sensitive to nutrient starvation and osmotic stress. Defective for starvation-induced thermotolerance and H2O2 resistance. Sensitivity to hydroxyurea, AZT,
X-irradiation, novobiocin and fluoroquinolones, defective in plasmid maintenance, resistance to bacteriophages P1, P2 and λ [63]. Reduced persistence and multidrug
tolerance [199]. Defective in type VI secretion [162], in export [125], and for growth on several carbon sources such as mannose, maltose and glycerol [200]. Synthetic
lethality with secBmutation [28]. Induction of the entire heat-shock response [201] and of SecB expression [148]. Synergizes with tig and groESL mutations ([31];
unpublished data).
dnaJ: Cs below 14 °C, Ts above 43 °C, filamentous, alteredmotility, defective in plasmidmaintenance,resistance to bacteriophages P1, P2 and λ; suppresses colanic acid
induction and UV sensitivity of a lon mutant [63]. Sensitive to spectinomycin, copper, low pH, high salt, cobaltazido thymidine [55].
grpE: Essential for growth only in the presence of DnaKJ [202].
B: DnaK: Toxic and induces mucoidy, filamentation, defect in plasmid maintenance. Defects are partially suppressed by the co-expression of DnaJ [63].
DnaKJ: Suppresses Cs of secBmutant. Induces tolerance to mutations [203].

GroESL A: Essential [93]. Point mutations and depletion lead to defects in DNA and RNA synthesis [204], UV sensitivity [205], filamentation [98], increased fluoroquinones
susceptibility [206], resistance to bacteriophages T4 and λ [207], induction of the Heat-Shock Response [201], inability to grow on rhamnose [208]. Synergy with dnaK
mutation (unpublished data).
B: Suppresses Ts of secA51 [141,182] and tig dnaKmutants [31,117], and Cs of secB [182], secY205, secY129, secAR11mutants (unpublished results). Induces tolerance to
aminoglycoside [209] and to mutations enabling adaptive evolution [203]. Enhances extreme thermoresistance [210].

a Phenotypes associated with mutation (A) or overexpression (B) of the E. coli chaperones described in this work. Ts and Cs stand for temperature- and cold-sensitive phenotype,
respectively.
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short conserved region at the extreme C-terminal (residues 624–638),
which most likely acts as an auxiliary binding site for unfolded sub-
strates [67]. During the DnaK chaperone cycle, the open/closed state
of the SBD is controlled by the nucleotide occupancy and status in the
ATPase domain of DnaK [64]. The ATP-bound DnaK (lid open) is charac-
terized by a low affinity and fast exchange rate for its substrates where-
as the ADP-bound form (lid closed) exhibits a high affinity and low
exchange rates. To prevent uncontrolled interaction with random sub-
strates, the DnaK chaperone cycle is tightly regulated by essential co-
chaperone partners. The DnaJ (Hsp40) co-chaperone family members
stimulate ATP hydrolysis and substrate delivery to DnaK, both events
leading to ADP-bound DnaK in complex with its substrate. This family
of proteins is characterized by the presence of a small compact domain
of approximately 70 amino acid residues, named the J-domain, which is
necessary for a functional interaction with DnaK (Fig. 1). These co-
chaperones are generally grouped in 3 classes. In addition to their J-
domain, class I members share a G/F-rich region, a zinc-binding domain
and a C-terminal domain involved in substrate-binding, class II mem-
bers generally have a similar domain arrangement except that they do
not possess a zinc-binding domain. In contrast, class III members only
share the J-domain with DnaJ. Whereas classes I and II are considered
generic co-chaperones, as judged by their ability to bind a large variety
of substrates, class III members often deliver specific substrates or con-
fer specific cellular localization to DnaK chaperones (Section 7). In
E. coli, DnaK is known to interact with three J-domain co-chaperones
(Fig. 1), namely DnaJ (class I), CbpA (class II) and the membrane-
bound DjlA (class III). The other co-chaperone that actively contributes
to the chaperone cycle of DnaK is the essential nucleotide exchange fac-
tor GrpE (Fig. 1), whichmediates the dissociation of ADP and the subse-
quent binding of a new ATP that triggers substrate release from DnaK
and resets the chaperone cycle [68–70].

It has been shown that DnaK preferentially binds to short extended
hydrophobic polypeptide sequences [71]. Such regions of extended con-
formation can be accessible to DnaK either during de novo protein fold-
ing, translocation through biological membranes or following thermal
or chemical stresses. Importantly, such peptide segments can also be
found within native macromolecular complexes, resulting in DnaK
orchestrating oligomeric assembly/disassembly of these complexes.
Attesting for such wide range of possible interactors, the recently pub-
lished in vivo interactome of the E. coli DnaK chaperone revealed that
DnaK interacts with more than six hundred proteins at 37 °C. Among
these proteins, ~80% were cytosolic proteins, ~11% inner membrane,
~3% outer membrane and ~3% periplasmic proteins [28]. Analysis of
the relative enrichment of substrates onDnaKpointed out that enriched
DnaK substrates are generally of low solubility [72], below average
cellular abundance and often part of heterooligomeric protein com-
plexes. Remarkably, in addition to its direct involvement as a main
chaperone inmaintaining protein homeostasis, DnaKmasters the entire
heat-shock response by acting directly on the stability of the E. coli heat-
shock factor σ32, which controls the synthesis of all the HSPs, including
key chaperones and proteases that often cooperate with DnaK in
response to protein aggregation [73].

The central role of DnaK in E. coli is additionally revealed by deletion
of its gene. Indeed, a dnaKmutant exhibits multiple phenotypes, includ-
ing slow growth at permissive temperature, a cold-sensitive (Cs) phe-
notype below 20 °C, and a high temperature-sensitive (Ts) phenotype
above 35 °C. Note that dnaK mutants readily accumulate extragenic
suppressors that confer growth advantage [74]. The most relevant
DnaK-associated phenotypes are shown in Table 1. Consequences of
dnaK mutations have been studied in other bacteria as well. While
DnaK is most likely essential in S. mutans [75] and in Mycobacterium
tuberculosis [76], dnaKmutants generally present severe growth defects
similar to the ones observed in E. coli, i.e., Ts phenotype and eventually
slow growth [77–84]. In addition, it appears that the presence of DnaK
often confers selective advantage to pathogens, including Vibrio
cholerae [79], Streptococcus intermedius [80], Salmonella enterica serovar
Typhimurium [81], Brucella suis [82], L. monocytogenes [83] and
Staphylococcus aureus [84].

The consequences of dnaKmutations in various bacteria are in com-
plete agreement with themultiple cellular functions attributed to DnaK
in E. coli [63], thus attesting for its prevailing role in bacterial physiology
and virulence.

4. The chaperonin GroESL

The E. coli chaperone GroEL and its obligate GroES co-chaperone
(together forming the GroESL machine) constitute the best character-
ized member of the HSP60/HSP10 chaperonin family. GroEL is a large
barrel-shaped protein complex composed of two heptameric rings of
57 kDa stacked back-to-back [85]. Each oligomer subunit is divided
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into three domains: the equatorial domain responsible for intra- and
inter-subunit interactions and for nucleotide-binding, the apical do-
main involved both in substrate and GroES binding, and the intermedi-
ate domain, which relays conformational changes between the other
two domains (Fig. 1). Each ring forms a cavity responsible for the bind-
ing of non-native protein via interactions with hydrophobic surfaces.
GroEL provides both a protected environment and a functional assis-
tance for the folding of polypeptide between 20 and 60 kDa. GroES
binding to GroEL depends on a short highly flexible region (residues
16 to 32 of GroES), the mobile loop, that folds into a defined β-hairpin
structure after complex formation (Fig. 1) [86]. The flexibility of this
short segment is crucial to allow binding of GroES to different GroEL-
substrate conformations and the subsequent release of the polypeptide
in the central cavity [87].

The GroEL folding chamber can be closed by a 7 GroESmolecules lid.
This allows confinement of the polypeptide and modification of the
cavity properties, corresponding to enlargement and exposure of hy-
drophilic residues. Productive protein folding requires ATP hydrolysis
in the same ring covered byGroES, the cis-ring. Finally, theGroES lid dis-
sociates and the protein can either be released into the cytosol or re-
mains bound to the chaperone for a new cycle [88]. The two rings can
communicate allosterically, so that events occurring in the cis-ring trig-
ger modifications in the trans-ring. According to the model the two
rings are alternatively binding and hydrolyzing ATP [88]. However
under certain conditions (low ADP and high GroES concentrations),
both rings could bind nucleotide and GroES producing a symmetric
complex named the football complex [88]. How GroEL helps a protein
substrate to fold is still unclear and themechanismmay varywith respect
to the substrate and/or the physiological conditions. Two main folding
models are proposed: the Anfinsen cage model for which the central
cavity is acting as a passive cage, so that folding can occur unperturbed
by aggregation [89] and the iterative annealingmodel implying an active
role of the cavity through repeated unfolding events (successive binding
and release cycles) to reverse kinetically trapped folding intermediates
and enhance folding [90,91].

In 2005, Kerner and colleagues identified substrates bound into the
central cavity of GroEL under standard laboratory growth condi-
tions [27]. This study showed that approximately 250 different proteins
interact with GroEL, representing more than 10% of cytosolic proteins.
Further in vitro refolding experiments allowed the authors to classify
substrates with respect to their GroEL requirement. Starting with the
lowest dependence, some can fold independently of GroEL but can uti-
lize the chaperone to improve their folding (Class I), a majority are
chaperone-dependent but can use either GroEL or TF and DnaK for fold-
ing (Class II). Finally, only 85 were obligate clients of GroEL (Class III).
Another study performing proteomic analyses on soluble fractions of
GroESL-depleted E. coli strains further delimitated obligate GroEL sub-
strates in vivo [92]. The authors monitored the presence of Class III pro-
teins in soluble fraction after overproducing them in GroESL-depleted
strain, and found that 57 Class III proteins were strictly chaperonin-
dependent for their folding in vivo (renamed Class IV), as they were
not found in the soluble fraction of GroESL-depleted strain. Among
them, 6 are essential proteins, providing an explanation for the essenti-
ality of GroESL for cell viability (see below) [93]. Except for size limita-
tion (between 20 and 60 kDa) due to the capacity of the GroEL cavity,
few common characteristics were found for GroESL substrates. Yet, an
overrepresentation of TIM barrels [27] and more generally aggregation-
prone folds [94] was observed among Class IV proteins. Note that two in-
dependent in vivo studies that did not specifically select for encapsulated
GroESL substrates identified a larger repertoire of GroESL interactors
[95,96], suggesting that differentmodes of binding/folding via the GroESL
chaperone might exist [97].

The E. coli GroESL machine, which is about 10 times less abundant
than DnaK, is essential for E. coli growth under all conditions tested so
far [93]. It was initially discovered as a host factor required for bacterio-
phage λ morphogenesis in E. coli [98] and different groES and groEL
mutations were later used to characterize the involvement of this chap-
eronemachine in E. coli physiology. Mutations in groESL are generally Ts,
induce cell filamentation, and affect both transcription and translation
[98,99]. Studies using various strains and inducible promoters control-
ling GroESL expression resulted in similar results [100,101]. Most of
the relevant phenotypes associated with GroESL mutations, depletion
or overexpression are shown in Table 1.

Following the initial finding that groESL is essential in E. coli, similar
results were obtained in other bacteria, including B. subtilis [102],
S. mutans [75], Legionella pneumophila [103] and Caulobacter crescentus
[104]. Note that in many bacteria, groEL and groES have been renamed
cpn60 (chaperonin 60) and cpn10 (chaperonin 10) respectively. Intrigu-
ingly, in approximately 30% of the sequenced bacterial genomes, 2
groEL/cpn60 genes or more are detected along with only one groES/
cpn10 gene [105]. The sequence identity between these paralogs is
generally high (between 60 and 80%) and their presence might be
explained either by overlapping functions or specialization. The first
hypothesis implies that each groEL gene is individually dispensable
but at least one is necessary for growth, as it is the case for S. meliloti
and Myxococcus xanthus [106,107]. Yet, in most cases it seems that the
specialization or subfunctionalization of the multiple GroEL is the
preferred option, with one essential housekeeping GroEL and a faculta-
tive one displaying amore specialized function [108–112]. Remarkably,
in numerous Mollicute species, groESL is either absent, as shown for
Ureaplasma urealyticum, a pathogen involved in reproductive tract
infections [113,114], or not essential, as demonstrated forMycoplasma
genitalium andMycoplasma pneumonia [115]. These bacteria with small
genomes have slow growth rates and only 61 proteins homologous to
the 250 known E. coli GroEL substrates, thus possibly explaining the
non-essentiality of the chaperonins [116].

The results gathered from E. coli and other bacteria emphasize well
the major function of GroESL in maintaining protein homeostasis in
the cytoplasmic space. Yet, it is known that efficient protein folding by
GroESL in vivo relies upon the upstream chaperones TF and DnaKJE,
which efficiently deliver substrates to GroEL [28].

5. Interplay among TF, DnaKJE, GroESL and other chaperones during
de novo protein folding

It has been shown that TF, DnaKJE and GroESLwork as an interactive
network of molecular chaperones assisting the folding of newly-
synthesized proteins (Fig. 2). Seminal work has shown that deletion of
the tig gene greatly enhances the number of newly-synthesized poly-
peptides interacting with DnaK and enables DnaK to bind to consider-
ably shorter nascent chains [24,25]. Accordingly, the number of DnaK
interactors significantly increases (N35%) in vivo in the absence of TF,
including ribosomal and small basic proteins. Supporting such a func-
tional redundancy, DnaK endogenous level is significantly increased in
the absence of TF [28]. Remarkably, newly-synthesized large multi-
domain proteins can sequentially interact with both TF and DnaK chap-
erones and in this case, TF and DnaK actively cooperate to facilitate their
folding in vitro [26]. Such a group of proteins seems to interact less ex-
tensively with DnaK in the absence of TF in vivo [28]. Previous genetic
studies have shown that the simultaneous deletion of both the tig and
dnaK genes causes synthetic bacterial lethality at temperatures ≥30 °C
and provokes a severe accumulation of aggregated proteins [31,117].
Noticeably, more than one thousand proteins, pre-existing and de novo
synthesized, were shown to aggregate at 30 °C in this double tig dnaK
mutant, indicating that interplay between the two chaperones is indeed
crucial for the overall cellular protein homeostasis.

In contrast with the double tig dnaK mutant, Ts mutant alleles of
groEL (groEL44 and groEL140) did not present any synergistic effect
with tig mutations (unpublished data). Nevertheless, overexpression
of GroESL efficiently suppressed both the Ts phenotype and the protein
folding defect observed in the absence of both TF andDnaK [31,117]. Ac-
cordingly, in the absence of both chaperones, 150 additional E. coli



Fig. 2. Chaperoning of de novo protein folding and targeting by TF, DnaKJE and GroESL, and their interplaywith other chaperones and targeting factors in E. coli. De novo protein synthesis
(center), cytosolic protein folding (right), Sec pathway (bottom), Tat pathway (top), targeting of C-tail anchored proteins (left). Abbreviations for the chaperones and targeting factors
described are: Trigger Factor (TF), DnaKJE (KJE), GroESL (ESL), SecA (A), SecB (B), and redox enzymematuration proteins (REMPs). IM stands for innermembrane. A green arrow indicates
a previously established involvement (direct or indirect) of the chaperone or the targeting factor concerned, afilled black arrow indicates that an interaction between TF and Tat substrates
was found but no involvement described yet, and a dashed black arrow indicates a possible interaction between TF and C-tail anchored proteins that was not investigated. The Sec and Tat
signal peptides are shown in pink. See text for details.
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proteins were found to interact with GroEL in vivo [27]. In addition,
DnaK was shown to interact with more than 40% of the obligate GroEL
substrates, indicating that GroEL and DnaK substrates overlap signifi-
cantly [28]. This is in agreement with a proposed model in which
DnaK is oftenworking upstreamof GroEL, stabilizing substrates for sub-
sequent productive interaction with GroEL. Furthermore, significantly
more GroEL substrates were found to interact with DnaK in vivo upon
GroEL depletion and about ~70% of GroEL substrates aggregate in the
double tig dnaK mutant, thus arguing for a central role of DnaK in
targeting protein substrates to GroEL [28]. The strong genetic synergy
observed between a dnaKmutation and a sensitive groEL44 mutant al-
lele, i.e., a drop of at least 5 °C in the permissive temperature of growth,
further attests to such intricate interplay between the two chaperones
(unpublished data).
As observed for GroEL, overexpression of the SecB chaperone effi-
ciently suppresses both the Ts phenotype and the severe aggregation
of cytoplasmic proteins observed in the absence of both TF and DnaK
[118,119]. In this case, suppression by SecB was independent of its pro-
ductive interaction with the SecA subunit of the Sec translocon, and a
direct interaction was observed between SecB and short nascent chains
of RpoB, a cytosolic model protein known to interact with both TF and
DnaK [118]. These results suggest that in addition to its specific role in
the chaperoning of presecretory proteins, SecB has the capacity to per-
form generic chaperone functions in E. coli. Accordingly, it is interesting
to note that both GroEL and SecB were recently isolated as highly
enriched DnaK interacting proteins [28].

Yet, interplay among TF, DnaKJE, GroESL and other chaperones like
SecB is not restricted to newly-synthesized cytosolic proteins. Indeed,
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significant fractions of proteins that either interact with these chaper-
ones or accumulate as aggregates in their absence were recently identi-
fied as inner membrane and exported proteins [27,28,41]. Furthermore,
mutations in chaperone-encoding genes often affect protein export and
show strong genetic interactions with mutations in genes involved in
protein targeting and translocation pathways. The following parts
focus on such emerging functions of TF, DnaKJE and GroESL.

6. TF functions in protein targeting pathways

6.1. TF and the Sec pathway

Seminal works from the Wickner's lab identified TF as E. coli factor
that forms a stable 1:1 complex with purified precursor of the outer
membrane protein OmpA and triggers it into a translocation competent
protein [39,120,121]. Further work by other groups showed that TF can
interact co-translationally with several nascent presecretory proteins,
including PhoA, PhoE [29], OmpA [49], β-lactamase and MBP [51]. Yet,
although TF could bind and assist proOmpA in a manner comparable
to that of the SecB chaperone, it could neither bind nor retain the
outer membrane precursor of PhoE competent for translocation [122].
This is in sharp contrast with the known translocation competent
SecB–prePhoE complex, thus suggesting differences in substrate speci-
ficity between the two chaperones.

Although TF efficiently stabilized translocation competent proOmpA
in vitro, the deletion of the tig gene exhibited no major defect on
proOmpA processing in vivo. On the contrary, the absence of TF slightly
accelerates export of known SecB substrates, i.e., OmpA, OmpF and
OmpC, as well as the SecB-independent substrate preBla (β-lactamase)
[53,123]. This suggests that TF can maintain a prolonged interaction
with precursors and delay their targeting or transfer to downstream
chaperones. Thus, overexpression of TF strongly retards translocation
of these proteins [31,53,123–125]. Remarkably, the impact of
ribosome-bound TF on protein export was even more pronounced in
the absence of the chaperone SecB. Indeed, several studies have
shown that tig mutation fully suppressed the SecB-dependent defect
in proOmpA, proOmpF and proOmpCprocessing, and the Cs and Ts phe-
notypes of a secB null strain [31,53,123,125]. In addition, toxicity in-
duced by overexpressed TF was significantly intensified in the absence
of endogenous SecB [31,125]. Further highlighting such a strong con-
nection between TF and the Sec pathway, mutations in tig additionally
suppressed both the Ts and Cs phenotypes of other sensitive sec alleles,
i.e., secA51, secAcsR11 and secY40, and induced an increased expression
(about 1.5 fold) of endogenous SecA [28,44,125].

Using an in vivo ribosomeprofilingmethod based on the purification
of E. coli ribosome-nascent chain complexes (RNC) cross-linked to TF
and the subsequent analysis of the whole fraction mRNA footprint frag-
ments protected by the ribosome, Oh and colleagues [44] showed that
OMPs mRNA were highly enriched in such complexes. This included
OmpA, OmpC/F, LptD and LamB proteins as the most enriched mRNA
(top 25) out of the approximately 2000 genes examined [44]. These re-
sults indicate that OMPs are strong TF interactors in growing E. coli cells.
In support of this, the outer membrane usher protein AfaC, OmpA and
the periplasmic proteins OpgG and PstS were also isolated as enriched
TF substrates in vivo by affinity purification using TF as bait [41]. In ad-
dition, two independent studies performing SILAC (stable isotope label-
ingwith amino acids in cell cultures) followed bymass spectrometry on
both whole cell lysates and purified outer membrane fractions of E. coli
wild-type and tig mutant revealed that a significant fraction of OMPs
and periplasmic proteins was significantly decreased in the absence of
TF [28,44]. This included the known OMPs OmpA, Tsx, OmpC, TolC, the
periplasmic proteins DegP, Spy, FkpA, GlnH, LolA, OppA and PbpG, and
several outer membrane subunits of the essential Bam complex in-
volved in the insertion of β-barrel proteins in the outer membrane
[28,44,126]. As proposed by the authors, the fact that E. coli tigmutants
are sensitive to SDS, EDTA and to the antibiotic vancomycin thatweaken
the outer membrane, is in agreement with the observed decrease in
OMPs (Table 1; [55]). In addition, the sensitive profile of a tigmutant ob-
tained after a chemical screen of 300 different conditions correlateswell
with profiles of certain bam mutants, suggesting contribution to com-
mon pathways [44].

Together these results indicate that presecretory proteins represent
a significant fraction of TF interactors and that ribosome-bound TF may
play a key role at early stage during their biogenesis. A very likelymodel
is that TF facilitates post-translational targeting of precursors by main-
taining them in a form competent for binding to SecA [127] or by trans-
ferring them to downstream chaperones like DnaK or SecB (Fig. 2). In
such a model, TF would prevent unproductive co-translational translo-
cation, assuring proper functioning of the Sec translocon and indirectly
facilitating later folding or interaction with other factors in the peri-
plasmic compartment [128]. In agreement with such a hypothesis,
the fraction of membrane-bound ribosomes and SecA was significantly
increased in the absence of TF, suggesting increased co-translational
translocation [125]. Recently, Oh and colleagues [44] used an elegant
method previously developed by Linda Randall's group [129] to esti-
mate the fraction of polypeptides that are translocated co- or post-
translationally by visualizing the amount of processed and unprocessed
N-terminal regions within a population of incomplete nascent chains
in vivo both in wild-type and tig mutant cells. Using LamB as model,
an OMP that is processed almost entirely post-translationally in wild-
type cells, they could show that in the absence of TF, the export of this
protein significantly switches to a more co-translational mode. This
strongly supports a model in which TF favors a post-translational
engagement of precursors with the Sec translocon (Fig. 2).

Decision about co- or post-translational targeting takes place at the
ribosome, early during polypeptide synthesis. Both TF and SRP can
bind simultaneously to the L23 protein at the ribosomal polypeptide
exit tunnel and their recruitment to translating ribosome is modulated
by the nascent chain itself [6,130,131]. Previous work suggested that
TF could provide a discriminatory role early during the targetingprocess
by preventing interaction of SRP with mildly hydrophobic signal pep-
tides, thus orienting presecretory proteins toward a post-translational
mode of translocation. On the other hand, the high affinity of SRP for
strongly hydrophobic signal sequences of emerging nascent chains clearly
outcompetes TF to initiate co-translational targeting of ribosome-nascent
chain complexes to the Sec translocon [132–135]. In vivo, the relevance
for such a possible interplay between TF and SRP is not known and initial
work performed in E. coli showed that the lack of TF did not reroute
proOmpA toward SRP [136], thus suggesting that the co-translational
targeting of presecretory proteins observed in the absence of TF is notme-
diated by SRP.

Another factor capable of competingwith TF for binding to emerging
polypeptide chains of presecretory proteins is SecA, which also binds to
L23 at the ribosomal polypeptide exit, as observed for TF and SRP
[18,137]. It has been shown that SecA preferentially binds to nascent
chains of presecretory proteinswithmildly hydrophobic signal peptides
and targets them mainly post-translationally to the Sec translocon
(reviewed in [20]). Yet, it is not known whether ribosome-bound TF
cooperates with SecA or in contrast, prevents unproductive binding of
SecA to nascent precursors that must transit via downstream chaper-
ones like DnaK, SecB or perhaps GroESL, before interacting with
membrane-bound SecA (Fig. 2). Alternatively, the presence of TF
might also prevent the SecA-dependent co-translational targeting
of ribosome-nascent chain complexes to the Sec translocon [125,137].
In agreementwith such a hypothesis, SecA overexpression can partially
suppress the Cs phenotype of a secBmutant observed in the presence of
TF, albeit significantly less efficiently than tig mutations [125]. On the
other hand, excess of SecA in vivo might well be sufficient to partially
bypass the need for downstream SecB and insure post-translational
targeting in spite of the presence of TF. In this case, suppression by
SecA overexpression or tig mutations would thus occur by different
mechanisms.Morework is clearly needed to shed light on such possible
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interplays between TF and SecA during initial stages of the post-
translational targeting cascade.

6.2. TF and the Tat pathway

In vitro cross-linking experiments initially revealed that TF can
interact with signal peptides of two different Tat substrates, the
trimethylamine N-oxide reductase TorA and SufI, a suppressor of ftsI
mutations belonging to the multicopper oxidase superfamily [138].
However, further in vivo experiments showed that deletion of the tig
geneneither perturbed kinetics of preSufI processing via Tat nor favored
accumulation of unprocessed precursors at steady state [138]. In addi-
tion, overexpression of TF, which is known to severely delay the export
of some Sec-dependent substrates, did not affect translocation of SufI
via Tat, both at steady state and by pulse-chase analysis [138]. Although
TF does not seem to play a major role in the E. coli Tat pathway, the
amount of data available is very limited and we cannot exclude a contri-
bution of this chaperone in this process (Fig. 2).

A possible contribution of TF-like chaperones to the Tat pathway has
emerged fromwork performed in the obligate anaerobic Gram-positive
bacteriumD. hafniense, whichhas the ability to growusing organohalide
respiration [37]. Key to such an anaerobic respiration is the reductive
dehalogenase enzyme PceA, which harbors a Tat signal sequence and
which is most likely translocated folded via the Tat pathway. The PceT
protein, whose gene is present in the same operon as pceA, is an atypical
TF chaperone without the N-terminal ribosome-binding domain but
retaining both the PPIase domain and C-terminal chaperone domain
of classical TF chaperones. Note that this bacterium encodes two ad-
ditional full-length TF that may function as generalized chaperones.
Purified PceT exhibits both PPIase and chaperone activities in vitro
and co-immunoprecipitation experiments performed on D. hafniense
cell extracts revealed that PceT indeed interacts with PceA precursors
harboring the Tat signal peptide but notwith themature form [139]. Ac-
cordingly, an interaction between PceT and the Tat signal peptide of
PceA was further confirmed using a bacterial two hybrid assays per-
formed in E. coli [37]. Remarkably, overexpression of PceT efficiently
solubilized the aggregation prone reductive dehalogenase PceA and
prevented its degradation in E. coli, thus highlighting a new class of ded-
icated TF-like chaperones involved in the processing of Tat-dependent
substrates.

6.3. TF and protein export in other bacteria

Although not well documented, a role for TF in protein secretion has
been observed in the Gram-positive human pathogens S. mutans and S.
pyogenes. In S. mutans, mutations in tig/ropA impaired activity of the cell
wall-associated fibrillar surface protein P1, which mediates adherence
to the tooth and which is secreted in a SecA-dependent manner. In
this case, the tig/ropA mutation did not significantly affect the amount
of secreted P1, thus suggesting a role for TF in the maturation of P1 pre-
cursors [60]. In S. pyogenes, a bacterium responsible for group A strepto-
coccal infections in human, the cysteine protease SpeB (exotoxin B) is
one of the most abundant secreted proteins that contribute to patho-
genesis. A genetic screen for proteinase deficient mutants of this bac-
terium using transposon mutagenesis identified the tig/ropA gene
encoding TF as a main chaperone involved in SpeB biosynthesis. In-
deed, TF was required for both the secretion of the protease and
the productive maturation of the protease via its PPIase activity [62].
In this case, TF was acting on a single prolyl residue in the prodomain
of the exotoxin [140]. No defect in the secretion of other proteins, in-
cluding streptolysin O or DNAses was observed in the absence of TF
[62]. This work provided the first evidence for a role of TF in protein
secretion involving both its chaperone and PPIase activity.

All together the studies presented in this part highlight a key emerg-
ing role for TF in assisting Sec-dependent presecretory proteins, which
is in agreement with TF chaperone properties described in Section 2.
Yet, it remains to be determined how TF efficiently delivers competent
substrates to the Sec machinery and perhaps to downstream chaper-
ones before translocation occurs, and to what extent its PPIase activity
contributes to this process. In addition, deciphering early interplays be-
tween TF, SRP and SecA at the ribosomal polypeptide exit will undoubt-
edly help to understand such TF functions in protein targeting. Finally,
potential involvement of TF in the Tat export pathway or in the
biogenesis/assembly of inner membrane protein complexes remains
largely unexplored and merits further attention.

7. Multitasking DnaKJE facilitates post-translational
protein targeting

7.1. DnaKJE and the SecA–SecB pathway

The first evidence for a role of DnaKJE in protein export came for the
work by Phillips and Silhavy [141], who showed that the export of
LamB–LacZ hybrid protein that normally causes jamming of the Sec
translocon was facilitated by overexpressed DnaK. In this case, the
DnaK-dependent relief of the jammed translocon enabled the process-
ing of other exported proteins, thus suggesting a major function of
DnaK in response to stress affecting the Sec translocon. This is in agree-
ment with other studies showing that accumulation of presecretory
proteins induces the synthesis of HSPs [142,143] and that overexpres-
sion of the heat-shock factor σ32 facilitates the processing of MBP and
of an export-deficient LamB mutant in a secB null strain [144]. Direct
evidence for DnaKJE function during protein export under physiological
conditions was provided by Wild and colleagues [145], who showed
that processing of alkaline phosphatase (AP), a SecB-independent secre-
tory protein, was significantly impaired in the absence of a functional
DnaK. As expected, a mutation in dnaJ also affected AP export, albeit
less severely [145]. Strongly supporting such an involvement of DnaKJE
in protein export, several outer membrane proteins and lipoproteins
(17 in total, including OmpA, OmpC/F, OmpX, OmpT, lpp, BamA/D,
NlpD and Antigen 43) and periplasmic proteins (23 in total, including
DppA, OppA, ThiB, ZnuA and DegP) have been recently identified as
bona fideDnaK substrates in vivo [28]. Finally, DnaKJE was also required
for the export of β-lactam degrading enzymes [146].

Most of our knowledge concerning the DnaKJE chaperone machine
and the Sec-dependent secretion originates from the study of
sec-sensitive mutant alleles. Indeed, processing of OmpA, OmpC and
OmpF relied on a functional DnaKwhen protein translocationwas com-
promised following SecA depletion. In this case, a direct interaction be-
tween DnaK and proOmpA was observed [147]. In addition, it has been
shown that overexpression of DnaKJ efficiently suppresses the Cs phe-
notype of a secB null strain and facilitates export of SecB-dependent
substrates such as LamB or MBP (unpublished data; [125,145]). While
processing of these SecB substrates was not affected by dnaKmutations
in the presence of SecB [145], the depletion of DnaKJ in the absence of
SecB induced both a further decrease in the processing of these proteins
and a massive accumulation of protein aggregates in the cytoplasmic
space [125,145]. These aggregated proteins included knownDnaK cyto-
plasmic substrates as well as several outer membrane proteins, namely
OmpX, OmpC, OmpA, PhoE and YaeT [125]. Further supporting such in-
terplay between DnaK and SecB, mutations in secB and dnaK(or dnaJ)
show synthetic lethality (Table 1) and expression of each chaperone is
upregulated in the absence of the other [125,148]. Together these
results suggest a model in which DnaKJE significantly contributes to
the general Sec secretion pathway, both by assisting the post-
translational translocation of a subset of specific substrates and by res-
cuing SecB substrates that accumulate under stress conditions affecting
the Sec translocon, most likely maintaining them in an export compe-
tent form for a prolonged period until normal growth conditions
resume [149]. In agreement with such a model (Fig. 2), the absence of
ribosome-bound TF, which induces an artificial co-translational mode
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of translocation of presecretory proteins (see Section 6) partially sup-
presses the synthetic lethality of a double secB dnaJ [125,145,149].

Intriguingly, it was recently shown that alteration of the conserved
C-terminal end of DnaK, which is involved in weak substrate-binding
but not in interdomain allostery, severely affects bacterial growth in
the absence of SecB [67]. This suggests that this region could be critical
for DnaK's function in protein export. Together with the physical inter-
action recently foundbetween SecB andDnaK in vivo, these data suggest
that the two chaperones might work in concert more than previously
thought (Section 5).

7.2. DnaKJE and the chaperoning of autotransporters

A role for DnaK in chaperoning the export of autotransporter pro-
teins has been suggested. Autotransporters are cell-surface-exposed
and secreted proteins that are widely spread among Gram-negative
bacteria and which often contribute to bacterial virulence [150,151].
They generally possess an N-terminal signal sequence that mediates
innermembrane targeting and translocation through the Sec translocon,
a C-terminal translocator domain that forms a β-barrel structure in the
outer membrane, and the central passenger domain that translocates
across the outermembrane to the bacterial surface. Most likely, success-
ful secretion and folding of such proteins is tightly coupled to transloca-
tion across the two membranes and relies on several generic factors,
including molecular chaperones, in both cellular compartments [152].
The bacterium Aggregatibacter actinomycetemcomitans, a Gram-negative
human pathogen associated with severe periodontitis produces
collagen-binding cell surface structures composed of the extracellular
matrix protein adhesion A (EmaA), which belongs to the autotransporter
family of proteins. Recent work suggests that membrane targeting of
EmaA requires DnaK [153]. Indeed, overexpression of a dominant nega-
tive dnaK mutation significantly affected EmaA secretion in the absence
of endogenous SecB chaperone. Interestingly, Janakiraman and col-
leagues [154] showed that DnaK was necessary both for secretion and
polar localization of the autotransporter IcsA, which is required for
actin assembly following Shigella infection of host cells. Similar role for
DnaK was observed with another Shigella autotransporter, the serine
protease autotransporters SepA, suggesting a more general role for
DnaK in chaperoning autotransporters [154].

7.3. DnaKJE and the biogenesis of inner membrane proteins

Although mostly found in the cytosol, preliminary work using
immunogold labeling techniques indicated that a significant fraction
of DnaK localizes at the E. coli inner membrane under physiological con-
ditions [155]. Such intriguing observation was more recently confirmed
by two independent proteomic studies of the E. coli inner membrane
complexosome [156,157]. The presence of DnaK at the membrane sug-
gests that in addition to its role in protein export, DnaK could contribute
to the biogenesis of inner membrane proteins or protein complexes by
facilitating their targeting to Sec and YidC, or their subsequent assembly.
The fact that a significant fraction (about 10%) of the in vivo DnaK
interactors in E. coli are inner membrane localized proteins is in line
with such a hypothesis [28]. Yet, a direct involvement of DnaK has been
very difficult to tackle and very little data have been provided to date.

Possible links betweenDnaK and SRP have been investigated but did
not reveal a major contribution of DnaK in this pathway [158,159].
Bernstein and Hyndman [159] first observed that depletion of SRP in-
duced a σ32-dependent heat-shock response and that the resulting syn-
thesis of HSPs was essential for viability under low SRP concentration.
Accordingly, SRP depletion increases the inner membrane fraction of
DnaK and GroEL (Section 8) and was accompanied by an increased ac-
cumulation of protein aggregates in the cytoplasm [158]. However,
both chaperones do not significantly contribute to bacterial survival at
low SRP levels, asmutations in either dnaK or groELdid not further com-
promise the viability of SRP deficient strains. In this case, other HSPs,
mainly proteases, were responsible for survival in response to low SRP
levels [159].

An intriguing connectionwas recently found between DnaK and the
essential protein insertase YidC, which assists the biogenesis of inner
membrane proteins alone or in concert with the Sec translocon
[160,161]. Indeed, a proteomic analysis performed upon YidC depletion
revealed that an increased fraction of DnaK was found at the inner
membrane, thus suggesting a redistribution of both chaperones toward
the membrane. Note that in contrast with SRP, YidC depletion neither
provoked an accumulation of aggregated proteins nor induced the syn-
thesis of HSPs. Although the significance for such a probable redistribu-
tion remains to be determined, it suggests that DnaK, and perhaps
GroEL (Section 8), could actively participate in pathways involving
YidC [160]. Recently, a role for DnaK in the efficient targeting of the
TssL C-tail anchored inner membrane protein of the Type VI secretion
system of enteroaggregative E. coli has been found. The so called C-tail
anchored proteins possess a single C-terminal transmembrane domain
and are relatively rare in bacteria [161]. Their targeting, most-likely
post-translational, and insertion into the inner membrane remains
largely unexplored. Aschtgen and co-workers [162] show thatmutation
in dnaK, but not in secB or tig, significantly impaired insertion of the TssL
protein. Interestingly, membrane insertion of TssL was YidC-dependent
but SRP-independent, thus providing a first evidence for a pathway in-
volving DnaK and the downstream YidC for post-translational insertion
of C-tail anchored proteins in bacteria (Fig. 2; [162]). Further work is
needed to pin point a more general contribution of such a DnaK/YidC
pathway in the biogenesis of C-tail anchored proteins.

7.4. Membrane recruitment of DnaK by specialized cochaperones

Although most of the DnaK functions described above seem to rely
on its DnaJ cochaperone partner, DnaK can be recruited to the inner
membrane by a specialized class of membrane anchored DnaJ-like
cochaperones [63]. These proteins especially present in Gram-negative
bacteria belong to the class III J-domain proteins that only share the
short J-domain sequence (about 70 aa)withDnaJ. TheDjlA cochaperone
(DnaJ-like protein A) from E. coli is the best characterized member of
this class of proteins (Fig. 1). It is a dimeric class III inner membrane
protein that possesses a single N-terminal transmembrane domain, a
central domain of unknown function and a cytoplasmic C-terminal
J-domain [163–166]. The djlA gene is not essential in E. coli but it
can act synergistically with dnaJ in supporting E. coli growth since a
djlA dnaJ double mutant exhibited a pronounced growth defect
above 40 °C [167]. As a bona fide DnaJ-like cochaperone, it has been
demonstrated that DjlA interacts and controls DnaK chaperone function
via its functional J-domain but its cellular function remains unknown
[166]. A mild overexpression of DjlA enhanced sensitivity to certain
drugs such as novobiocin and the anticalmodulin W7, and induced the
synthesis of mucoid colanic acid capsule in a strictly DnaK-dependent
manner. However, a stronger overexpression of DjlA was rapidly fatal
for E. coli ([164]; unpublished data) and such toxicity relied on both
DjlA's proper membrane localization and a functional interaction with
DnaK (unpublished data).Whether too high concentration of relocalized
DnaK directly interferes with uncharacterizedmembrane transport pro-
cesses or is hijacked from its multiple cytoplasmic functions remains
unknown.

A role for DjlA in bacterial virulence has been described in the Gram-
negative pathogens L. pneumophila and Legionella dumoffii [168,169].
The djlA gene was first identified as a gene required for intracellular
growth of L. dumoffii in murine macrophage-like cells or in human epi-
thelial cells. In this case the lack of DjlA resulted in a failure to inhibit
phagosome/lysosome fusion as well as an increased susceptibility to
stresses [169]. In L. pneumophila, DjlA was also needed for intracellular
survival and growth in macrophages and it has been proposed that it
may play a role in the assembly of the organelle trafficking intracellular
multiplication (Dot/Icm) type IV protein translocation apparatus
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needed for the secretion of a set of bacterial proteins into the host cyto-
plasm, perhaps controlling the DnaK-dependent assembly/disassembly
of this secretion apparatus. Finally, mutation of the djlA gene in the
Gram-negative clam pathogen Vibrio tapetis inhibited both cytotoxicity
against clamhemocytes and thedevelopment of the brown ringdisease,
further demonstrating a major role for DnaK–DjlA chaperone/
cochaperone pairs in virulence [170].

The cell wall-less bacterium M. pneumonia is a human pathogen
that causes pharyngitis and bronchitis. Gliding motility and attach-
ment, which contribute to successful colonization of host cells are
predominantly mediated by the terminal organelle, a polar and
membrane-bound structure containing proteins gathered at its
terminal cap [171]. In this bacterium, the atypical type III J-domain
protein TopJ, which localizes to the base of the terminal organelle,
is necessary for gliding motility and attachment. Except for the
J-domain, TopJ shares no other domain with DjlA or DnaJ [171].
Adjacent to its N-terminal J-domain, TopJ possesses (i) a short aromatic
and glycine residue domain (EAGR box) and (ii) a central large acidic
and proline-rich (APR) domain, both present in other terminal organelle
proteins, and (iii) a less conserved C-terminal domain.While the APR
and C-terminal domains of TopJ were shown to contribute to the
localization and stability of TopJ, a functional J-domain capable of
recruiting DnaK was absolutely essential for gliding motility and ad-
herence [171]. In this case, it has been proposed that the TopJ/DnaK
cochaperone/chaperone partners might be involved in the matura-
tion process of the terminal organelle, perhaps acting on the translo-
cation or folding of the membrane-anchored primary adhesin P1
[171].

These studies illustrate well the diversity and the key cellular func-
tions played by specialized DnaJ-like co-chaperones capable of trigger-
ing relocalization of the entire DnaK chaperone power to the inner
membrane.

7.5. DnaKJE and the Tat pathway

Although DnaKJE generally appears critical for Tat, its precise
contribution remains obscure. Several groups have shown that
DnaK interacts with precursors of different Tat substrates or with
protein chimeras containing Tat signal sequences [28,172–174],
and that DnaK binding sites critical for folding and proper targeting
of Tat-dependent substrates might also be present outside leader
sequences [172,173]. In addition, interactions have been revealed
between DnaK and several REMPs, suggesting that DnaK could act
in concert with these Tat-dedicated chaperones [28,175]. Co-
exported partners of the Tat-dependent substrates were also identi-
fied as bona fide DnaK interactors in vivo, thus further extending the
involvement of DnaK in Tat [28]. Finally, both translocase subunits
TatA and TatB were recently identified as DnaK interactors, suggest-
ing that DnaK could directly contribute to substrate transfer to the Tat
machinery at the inner membrane [28].

To date, the best characterized model for DnaK involvement in
the Tat export pathway is the biogenesis of the Tat-dependent
multicopper oxidase CueO [172,173]. Indeed, it has been shown
that mutations in dnaK inhibit translocation of chromosomally-
encoded CueO, without significantly affecting its stability in the cy-
toplasmic space. This is in agreement with in vitro and in vivo affinity
purification experiments showing that DnaK efficiently binds CueO
precursors. The fact that endogenous CueO precursor was not de-
graded in the absence of DnaK suggests that the chaperone may par-
ticipate in folding and/or assembly, or directly modulate interaction
with the Tat translocon [172]. Intriguingly, overexpressed CueO, and
other Tat substrates including SufI and Tat-GFP chimeras, were very
efficiently degraded in the absence of DnaK, indicating that the
chaperone may also contribute to the stabilization of Tat substrates
and prevent degradation by proteases [173]. The fact that the ab-
sence of DnaK does not stimulate degradation of chromosomally-
encoded low levels of CueO suggests that other chaperones, includ-
ing GroEL and SlyD that also bind Tat signal sequences efficiently
could contribute to stability [172,175]. Overexpression of Tat sub-
strates would thus rapidly overwhelm both the chaperones and the
Tat translocon, and subsequently be targeted for degradation. In
agreement with such hypothesis, overexpression of DnaKJ improved
both, expression and translocation of several overexpressed Tat sub-
strates [173], perhaps increasing the folding yield of Tat substrate
competent for export and/or avoiding premature engagement with
the Tat translocase.

DnaK was isolated as one of the main proteins that bind the Tat
leader sequence of the catalytic subunit DmsA of the dimethyl sulf-
oxide reductase, despite the presence of its specific REMP DmsD
[174]. Later work revealed that DnaK also interacts with both the
REMP DmsD and the DmsB subunit B, which is co-exported with
DmsA [28,175], thus highlighting intricate interactions between
DnaK and several components of the dimethyl sulfoxide reductase.
Yet, dnaK mutation only partially affected DmsA translocation
in vivo [172], suggesting that other generic chaperones could par-
tially replace DnaK as proposed for CueO. Nevertheless, all these
experiments were performed at permissive temperature for a
dnaK mutant (30 °C) and it is very likely that DnaK function in
the biogenesis of the dimethyl sulfoxide reductase will become es-
sential at higher physiological temperature or under stress
conditions.

More Tat-dependent substrates seem to rely on DnaK for their
export. Indeed, translocation of SufI was also affected, albeit very weak-
ly, in the absence of DnaK. In this case, a significant fraction of SufI pre-
cursors accumulated in an export-incompetent conformation, perhaps
due to impaired folding or premature targeting [138]. In addition,
while membrane localization of the formate dehydrogenase N subunit
G (FdnG)was not affected by the absence of DnaK, the resulting formate
dehydrogenase activitywas significantly lower, suggesting that translo-
cation or assembly of the enzyme complex is partially affected under
these conditions [173]. In contrast, translocation of both the high poten-
tial iron–sulfur protein HiPIP and the unknownYcdB proteinwas not af-
fected bymutations in dnaK, although DnaKwas shown to interact with
their Tat signal sequences [172,176].

The fact that DnaK is capable of interacting (i) with the signal se-
quence and/or the mature region of Tat-dependent precursors, (ii)
with specific REMP chaperones, (iii) with other co-exported protein
subunits and (iv) with the Tat complex itself, suggests an attractive
model in which DnaK acts at multiple steps in the maturation pro-
cess, including stabilization, folding, assembly, as well as the timely
and efficient targeting to the Tat complex at the inner membrane
(Fig. 2). Whether DnaK contributes alone or within an expanded co-
operation with other chaperones like the chaperonin GroEL, the
PPIase andmetallochaperone SlyD or the specialized REMPs, remains
to be determined [27,172]. Finally, regulatory proteins such as CueR,
the activator of copper-responsive regulon genes, including cueO, or
the TorR DNA-binding response regulator of the torCAD operon have
been recently identified as DnaK substrates in vivo [28]. Therefore, it
is likely that the DnaKJE chaperone machine additionally contributes
to Tat by indirectly modulating the expression of genes encoding
Tat-dependent proteins, thus adding one extra level of control by
DnaK.

The discoveries discussed in this section clearly demonstrate that
in addition to its pivotal role in assisting de novo protein folding and
in maintaining protein homeostasis in the cytoplasmic space, DnaK
equally contributes to the post-translational targeting of both folded
and unfolded translocation competent presecretory proteins to the
inner membrane. Such a variety of interactors and interactor proper-
ties is in line with DnaK's abilities to interact with both native and
unfolded proteins, as well as with oligomeric protein complexes
(Section 3).
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8. GroESL in protein targeting pathways

8.1. GroESL and the Sec pathway

A direct involvement of the E. coli chaperonin GroESL in the process-
ing of Sec-dependent substrates has been observed in some cases. In-
deed, overexpression of GroESL or GroEL alone improved the export of
the LamB–LacZ fusion protein and decreased jamming of the E. coli pro-
tein export machinery, as observed for DnaK [141]. In addition, GroEL
was able to interact with urea-denatured proOmpA and prePhoE
in vitro, and to stabilize proOmpA for transit into inner membrane
vesicles [177]. Furthermore, mutations in groESL (groES619 or groEL44)
significantly delayed β-lactamase processing in vivo [178]. Yet, in con-
trast with SecB, the effect of such groESL mutations on protein export
could not be generalized to other presecretory proteins, as processing
of both proOmpA and proOmpF was unaffected under these conditions.
More recently, 5 outer-membrane proteins, namely CirA, Lpp, OmpA,
OmpC and OmpF, and 11 periplasmic proteins, including BlaT, FrdA,
OppA, YncE and the periplasmic chaperone Skp involved in outer mem-
brane protein biogenesis were identified as GroEL interactors in vivo
[27]. Noticeably, 4 of these interactors are known SecB substrates,
i.e., OppA, YncE, OmpA and OmpF, further highlighting possible over-
laps between the two chaperones [179,180].

Interplays between GroESL and the Sec machinery were further re-
vealed by genetic studies using translocation-compromised E. coli
cells. Indeed, overexpression of GroESL efficiently rescued most of the
sec-sensitive mutations, including the Ts secA51 and secY24, and the Cs
secY39, secE15, secE501, secD1 and secF62 alleles [181,182]. Accordingly,
we have confirmed and extended such suppression by GroESL using the
secY205, secY129, secAR11 and ΔsecB Cs alleles (unpublished data). The
fact that endogenous SecB levels increase in strains with impaired
GroESL is in line with such findings [148]. Importantly, the discovery
that GroEL is efficiently targeted to membrane-bound SecA in vitro
strongly supports such a link between the chaperone and Sec [183]. In
addition, the increased fraction of membrane-localized GroEL observed
both in E. coli following SecE, YidC or SRP depletion, and in B. subtilis in
response to ethanol stress indicates that re-localization of GroESL is in-
tensified under stress conditions affecting membrane integrity
[160,184,185].

Together these data demonstrate that GroESL actively contributes to
the Sec-dependent export process, perhaps acting directly on precur-
sors to facilitate their transfer to SecA at the inner membrane, as
observed for SecB or DnaK (Fig. 2). The fact that precursors need to be
in a non-native form in order to be translocated via Sec suggests that
the robust in vitro unfoldase activity of GroEL previously observed in
the absence of GroES might be critical in this case [97,186,187]. In
such a scenario, GroEL might act as a quality control device performing
partial unfolding and release of unproductive, folded precursor proteins
that have missed a timely interaction with the Sec translocon, thus
offering additional opportunities for translocation [97,186,187]. This is
in contrast with the active folding of cytosolic proteins that are bound
inside the cavity of GroESL as described in Section 4.

8.2. GroESL and the Tat pathway

Despite some experimental evidence, the role of GroESL in Tat
remains elusive. A study performed under anaerobic conditions first
demonstrated a negative effect of groESL mutations (groEL673 and
groES619) on the biosynthesis of the Tat-dependent NiFe-hydrogenase
1,which catalyzes the reversible oxidation of hydrogen under anaerobic
condition [188]. NiFe-hydrogenase 1 is composed of 2 subunits: HyaA
and HyaB, the former being a known Tat substrate and the latter a co-
exported partner [189]. Yet, evidence for a direct interaction between
GroEL and HyaA or HyaB is lacking, perhaps due to the fact that GroEL
interactome was performed aerobically. In contrast with dnaK muta-
tions, expression and localization of hybrid proteins containing the Tat
signal sequence of TorA fused to either GFP orMBPwere variably affected
by groESLmutations, as only the TorA-GFP hybrid seemed to partially rely
on GroEL [173]. Similarly, overexpression of GroESL enhanced transloca-
tion via Tat of the heterologous OPH (organophosphorus hydrolase)
fused to the TorA signal sequence [190] but did not help CueO or SufI
[173].

A direct interaction between GroESL and the Tat substrate named
AmiA was found in vivo. AmiA is one of the three N-acetylmuramyl-L-
alanine amidases present in E. coli, which is classified as one of the obli-
gate Class III GroEL client by Kerner and colleagues [27]. To date, there is
no physiological relevance for such interaction. The cytoplasmic protein
TatD, which is encoded by the tatD gene present in the tatABCDE operon
was also isolated as a bona fideGroEL substrate in vivo [92]. However, so
far there is no Tat function assigned to this protein. In addition, GroEL
was shown to interact with several Tat signal sequences including
those of AmiA, CueO andHiPIP, both in vivo and in vitro. Yet, interactions
of GroELwith Tat signal sequences seems to occurmainly in the absence
of DnaK, thus revealing possible overlaps between the two chaperones
during the processing of Tat substrates, with a selective advantage for
DnaK [172]. In addition to Tat substrates, it was shown that GroEL is
capable of interacting with both NapD and DmsD, which are the
REMPs for the Tat-dependent proteins NapA and DmsA, respectively
[175,191]. Together these results suggest a role for GroESL in the stabi-
lization and folding of some Tat substrates, perhaps cooperating with
REMPs or other chaperones and facilitating insertion of cofactors. Yet,
in contrast with the proposed multistep and generic involvement of
DnaKJE (Section 7), GroESL function in Tat might be directed towards
more specific substrates.
9. Concluding remarks

We have highlighted several lines of evidence that demonstrate
how, in addition to their major role in the folding of newly-
synthesized cytosolic proteins, the chaperones TF, DnaKJE and
GroESL contribute to post-translational protein targeting (Fig. 2).
Remarkably, the fact that these chaperones can participate at al-
most every step in translocation pathways that either export folded
or unfolded proteins is in complete agreement with their known
abilities to interact with various substrate conformations and to co-
operatively assist the folding of certain proteins. The fact that both
DnaKJE and GroESL are strongly induced in response to various
types of stress, including those affecting protein export or inner
membrane integrity, suggests that their contribution might be-
come predominant under these circumstances. Yet, it remains to
be determined how these chaperones precisely drive precursor
proteins to their correct translocation pathway and perhaps direct-
ly help translocation through the cytoplasmic membrane. Likewise,
active cooperation with other chaperones and targeting factors
such as SecB, SecA or the specialized REMPs still needs to be
demonstrated.

Interestingly, adding to their central role in protein export pathways,
it has been shown that both DnaK and GroEL are found as abundant ex-
tracellular proteins in certain bacteria [192–194]. Studies from various
bacteria indicate that these secreted chaperones can recognize and
bind ligands, thus contributing to cell adherence, biofilm formation
and pathogenesis [111,194], or exhibit activities similar to intercellular
signaling molecule, as it is the case for GroEL2 from M. tuberculosis,
which acts as an alternative macrophage activator [195] and GroEL
from Enterobacter aerogenes that functions as insect toxins [196,197].
To date, it is not known how these chaperones are exported to the cell
surface and to what extent dedicated export systems exist. In addition,
nothing is known about the oligomeric status of these secreted chaper-
ones and whether chaperone-bound substrates are involved [193].
More work is clearly warranted to shed light on such fundamental pro-
cess involving DnaK and GroEL.
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